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Manipulation of cooperative emission using laser pulses 
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The cooperative spontaneous emission from an ensemble of Λ type three-level atoms dressed by standing wave in 
resonance with coherent field is discussed. It is analyzed the spatial interference effect of fluorescent field as function of the 
distance between the radiators and relative position of atoms in the standing wave. The equations that describe the 
cooperative effect between the atom a and b are obtained. 
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1. Introduction 
 
Recently, a great attention in quantum optics is 

devoted to the study of spontaneous emission from two or 
more atoms trapped in the standing wave of external 
coherent field [1-3]. This interest is stimulated by a large 
number of publications dedicated to the cooperative 
resonance of atomic ensembles in the travel wave 
approximation [4, 5]. 

An interesting problem is connected with the 
modification of spontaneous emission in a three-level 
system stimulated by external coherent field [6] that is 
used successfully for such novel effects as lasing without 
inversion [7], quantum information processing [8]. Much 
attention has been focused on the spontaneous emission 
dynamics from multi-level atoms [9-10]. 

Following this idea, we discuss the cooperative 
spontaneous emission from an ensemble of Λ type three-
level atoms dressed by standing wave that is in resonance 
with electromagnetic field. For this situation we studied 
the behavior of such atoms in the traveling and standing 
waves. Taking in to account the dependence of fluorescent 
spectrum, the spontaneous emission rate on the intensity of 
external field and its quantum statistical proprieties, the 
new control possibilities of cooperative spontaneous 
emission phenomena are investigated. So, for large values 
of laser field intensity, the control of spontaneous emission 
is possible at two frequencies and atom-atom interaction 
process. The dependence of cvasi-energeticall levels of the 
atoms on its position in the standing wave is discussed. In 
this case, the atoms become undistinguished, they are 
situated in the equivalent points of standing wave. The 
kinetic equations that describe the cooperative effect 
between the atoms a and b are solved. 

 
 

2. The model hamiltonian and master equation 
 

Let study the cooperative generation light in a three-
level system stimulated by the presence of higher intensity 

standing wave that is in resonance with one atomic 
transition. This transition in the strong field limits takes 
place between the cvasienergetical levels of dressed 
atomic energetically spectrum which as will be shown 
below drastically is modified in the standing wave of 
resonator in comparison with similar transition in the 
strong traveling wave of free space [4]. The scheme of 
excitation of a three-level system represented in the Fig.1 
corresponds to the situation in which the atomic system is 
excited at second level and the low frequency of coherent 
field is in resonance with second >2|  and third >3|  
states. 

 

 
 

Fig. 1 Scheme of the energy excitations of an ensemble  
of three-level atoms. 

 
 

In order to study the cooperative generation of 
fluorescent field relatively to the 
frequency h/|)(| 1331 EE −=ω , we neglect the 
spontaneous emission rate at this frequency in comparison 
with similar spontaneous process at 
frequency h|)(| 2332 EE −=ω , considering that the dipole 
momentum transition 31d  are larger than 32d . In this 
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approximation the atom-field system can be described by 
the Hamiltonian  
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 The hamiltonian (1) takes into account the interaction 
with coherent field of standing wave (third term) and 
fluorescent electromagnetic field (fourth term). Here, +

jaα , 

jaα , are the generation and annihilation operator for level 

α  and atom j; 31d  and 32d  represent the dipole 

momentum transitions between the levels >>↔ 1|3|  and 

>>↔ 2|3| , respectively. )( kk bb+  is the generation 

(annihilation) operator of fluorescent electromagnetic field 
(EMF); )/,(/2 3131

2 deVcg kk d
rr

h λωπ=  represents the 

interaction constant with vacuum fluctuations; V  is the 

quantification volume; λer and 31d
r

 represent the photons 

polarization vector and the dipolar moment of transition, 
respectively. The atomic energy is measured relatively to 
the excited state >3|   ( 03 =E  ). 

Considering that coherent field is in resonance with 
transition >>↔ 2|3| , we can define the Rabi frequency, 

jΩ , for traveling, 0=λ  and  standing 1=λ  waves in 

the following 
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In order to eliminate the time dependence from 

Hamiltonian (1), we can make the following 
transformation tUUiUHUH eff ∂∂−= −− /11 h , where the 
operator U is represented through the detuning, 

032 ωω −=Δ  ,  
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After this transformation the effective Hamiltonian of 

the system becomes  
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As the effective Hamiltonian is time independently, 

let us consider that classical field is strong so that 

pj ωγhh >>Ω , where nωγ  is the collective spontaneous 

emission line width at transition >>↔ 3|2|  . In order to 
diagonalize the first and second terms of the Hamiltonian 
(3) we introduce the Bogoliubov transformation  
 

jjjjjj CCaCCa 232233
~,~ δγβα +=+=  

 
for atomic operators  
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The coefficients γβα ,,  and δ  are chosen in 

according with the diagonalization requirements  
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After this transformation the Hamiltonian (3) can be 

represented through the new cvasienergetical operators  
 

          ,int0 HHH +=                                (4) 
 
where 
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and 22~ ΔΩΩ += jj

. Here the operators 
13

1
3 aCU jj = ,  += 12

1
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and  
13

3
1 aCU jj

+= ,  
12

2
1 aCU jj

+=  represent the transition between 
the new cvazienergetical levels with populations 

jjj CCU 33
3
3

+= , 
jjj CCU 22

2
2

+=  and ground state >1| . The 
commutation relations for these operators are  
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Let us study the cooperative spontaneous emission 

from the dressed exited states of an atomic ensemble. 
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Introducing the generalized, O-operator for dressed 
atomic subsystem and using the method of elimination of 
EMF operators [4], one can obtain the following master 
equation for the mean value of operator >< )(tO   
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describes the behavior of exchange integral between atoms 
j and l  at the frequency  kω ,  
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The first and second terms from expresion (7) 

represent the integration in the sense of principal value and 
Dirack delta function respectively. Using this equation one 
can study the behavior of atomic subsystem dressed by 
external standing wave in the process of spontaneous 
emission. In order to find the mutual influence of neighbor 
atoms we will analyze the correlation between two atoms 
situated in the equivalent positions of standing wave of 
resonator. 

 
 
3. Discussion and results 
 
To understand the generalized expression (6) for )(tO , 

let us for simplicity study the behavior of two atoms, a  
and b in the standing wave. This affirmation can be similar 
to the case of traveling wave studied in [4]. Considering 
that atoms are situated in the volume less than half of 
wave length let us study the situation for 
which π)2/1(00 +=≈ nrkrk BA

. In this case the Rabi 
frequency from the expression (2) takes the extreme values 
for standing wave. As follows, the exchange 
integral, )(, kJ lj

, does not depend on the atomic positions. 

Indeed, if the operator )(tO coincides with )(2
2 tU a

or 

)(2
2 tUb from expression (6) one can obtain the following 

equation for the population operators in the dressed state 
scheme 
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In order to close this system of equations in analogical 

way we can found the other equations for atomic 
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From system (8) we can write the motion equations 

that describe the cooperative effect between the atom a 
and b  
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In the case when the distance between the atoms is 

much larger than wave length λ>>ABrk0
 and the behavior 

of exchange integral between atoms from expresion (7) 
takes the form  
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Here, we neglect the correction in the slow part of 
exchange integral connected with Rabi frequency. The 
frequency kω  represents the Stokes  Ω−= 31ωωs   or anti 
Stokes Ω+= 31ωωa  . 

Let us consider that the atoms are situated in different 
loops or nodes of the standing wave. If the moment 
dipoles of atoms are situated perpendicular jld nn rr

⊥  the 
exchange integral (10) will take the form 
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In opposite case, when dnr is parallel to the vector jlnr  , 
the exchange integral between the atom a  and b becomes 
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As follows from expressions (11) and (12) the exchange 
integral between the atom a and b  depends on its positions 
and orientation. If the atoms are situated in the loops the 
Rabi frequency is maximal. Neglecting the influence of 
Rabi frequency of exchange integral 31ωωκ = , we 

observe that )(, κ⊥
BAJ  is larger than in the case λfABr . In 

opposite case, when the atoms are located in nodes and the 
detuning 0=Δ , the Rabi frequency is minimal 0=Ω . In 
this situation 0)/sin( , =cr BAκω  and the exchange integral 
takes negative values. 
 

 
4. Conclusions 

 
In this paper we discuss the cooperative spontaneous 

emission from an ensemble of Λ type three-level atoms 
dressed by standing wave that is in resonance with 
coherent field. The behavior of such atoms in the traveling 
and standing waves was studied. The spatial interference 
effect of fluorescent field as function of the distance 
between the radiators and relative position of atoms in the 
standing wave is analyzed. Taking in to account the 
dependence of fluorescent spectrum and spontaneous 
emission rate on the intensity of external field and its 
quantum statistical proprieties, the new control 
possibilities of cooperative spontaneous emission 
phenomena is investigated. 
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